1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
//! The lowest-level, core functionality for controlling a GPU device
//!
//! You can use this module in isolation from the rest of Emu for the most
//! fine control over the internals of the library. The most important things
//! in this module that are likely of interest to
//! you are [`Device`](struct.Device.html), [`DeviceBox<T>`](stuct.DeviceBox.html)
//! , and [`DeviceFnMut`](struct.DeviceFnMut.html).

use crate::error::*;

// some std stuff...
use std::borrow::Borrow;
use std::collections::HashMap;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::io::{Read, Seek};
use std::marker::PhantomData;

// zerocopy is used for serializing and deserializing data to/from devices
use zerocopy::*;

// futures is for returning anything read from device as a future

// derive_more allows us to easily derive interop with wgpu stuff
use derive_more::{From, Into};

/// Contains information about a device
#[derive(From, Into, Clone, PartialEq)]
pub struct DeviceInfo(pub wgpu::AdapterInfo);

impl fmt::Debug for DeviceInfo {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{{ name: {:?}, vendor_id: {:?}, device_id: {:?}, device_type: {:?} }}",
            self.name(),
            self.vendor_id(),
            self.device_id(),
            self.device_type()
        )
    }
}

impl DeviceInfo {
    /// The name of the device (e.g. - "Intel(R) UHD Graphics 620 (Kabylake GT2)"")
    pub fn name(&self) -> String {
        self.0.name.clone()
    }

    /// The vendor ID (e.g. - 32902)
    pub fn vendor_id(&self) -> usize {
        self.0.vendor
    }

    /// The devie ID (e.g. - 22807)
    pub fn device_id(&self) -> usize {
        self.0.device
    }

    /// The device type (e.g. - Cpu)
    pub fn device_type(&self) -> DeviceType {
        match &self.0.device_type {
            wgpu::DeviceType::Cpu => DeviceType::Cpu,
            wgpu::DeviceType::IntegratedGpu => DeviceType::IntegratedGpu,
            wgpu::DeviceType::DiscreteGpu => DeviceType::DiscreteGpu,
            wgpu::DeviceType::VirtualGpu => DeviceType::VirtualGpu,
            _ => DeviceType::Other,
        }
    }
}

/// Represents a type of device
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum DeviceType {
    Cpu,
    IntegratedGpu,
    DiscreteGpu,
    VirtualGpu,
    Other,
}

/// Represents a single device
///
/// Since its fields are public, you can easily construct and mutate a `Device`'s
/// WebGPU internals. To get a `Device` from an existing device pool, you will want to use [`take`](../pool/fn.take.html).
///
/// One thing to remember is that each `Device` owns its data. So even though the device pool lets you create `DeviceBox`s on different devices,
/// you cannot use them together in the same kernel.
pub struct Device {
    /// The WebGPU device wrapped by this data structure
    pub device: wgpu::Device,
    /// The queue this device exposes to submit work to
    pub queue: wgpu::Queue, // in the future. when multiple queues are supported, overlapping compute, mem ops on the same device will be possible
    /// Information about the device
    ///
    /// This is optional so that you don't _need_ information to construct a `Device` yourself.
    pub info: Option<DeviceInfo>,
}

impl Device {
    // TODO don't use a new staging buffer; instead, pull staging buffers from a pool

    /// Gets all detected devices
    ///
    /// This is asynchronous because it may take a long time for all the devices
    /// that are detected to actually be available. However, you shouldn't
    /// actually use this. Unless you manually construct a pool of devices, a
    /// default device pool is implicitly created. So you should instead do one of the following.
    /// - If you are developing a library, select a device from the pool with [`select`](../pool/fn.select.html)/[`take`](../pool/fn.take.html)
    /// - If you are developing an application, construct a pool with [`pool`](../pool/fn.pool.html) or use the default pool
    ///
    /// If you are using the default pool, don't forget to call [`assert_device_pool_initialized`](../pool/fn.assert_device_pool_initialized.html) before doing anthing with a device.
    pub async fn all() -> Vec<Self> {
        let adapters = wgpu::Adapter::enumerate(wgpu::BackendBit::PRIMARY);

        futures::future::join_all(adapters.into_iter().map(|adapter| {
            async move {
                let info = adapter.get_info().clone();
                // we then get a device and a queue
                // you might think we need to support multiple queues per device
                // but Metal, DX, and WebGPU standard itself move the handling of different queues to underlying implmenetation
                // so we only need one queue
                //
                // searching for devices does not need to be async
                // it takes barely any time and should really only be the first thing Emu is used to do
                // also, it's a one-time thing
                let (device, queue) = adapter
                    .request_device(&wgpu::DeviceDescriptor {
                        extensions: wgpu::Extensions {
                            anisotropic_filtering: false,
                        },
                        limits: wgpu::Limits::default(),
                    })
                    .await;

                // return the constructed device
                // there is no cost to returning device info so we just do it
                // it might be useful for making an iterator over devices
                Device {
                    device: device,
                    queue: queue,
                    info: Some(DeviceInfo(info)),
                }
            }
        }))
        .await
    }

    /// Creates a constant `DeviceBox<T>` with size of given number of bytes
    ///
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let pi: DeviceBox<f32> = device.create_with_size(std::mem::size_of::<f32>());
    /// # Ok(())
    /// # }
    /// ```
    pub fn create_with_size<T>(&mut self, size: usize) -> DeviceBox<T>
    where
        T: ?Sized,
    {
        self.create_with_size_as::<T>(size, Mutability::Const)
    }

    /// Creates a mutable `DeviceBox<T>` with size of given number of bytes
    ///
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let mut data: DeviceBox<[f32]> = device.create_with_size(std::mem::size_of::<f32>() * 2048);
    /// # Ok(())
    /// # }
    /// ```
    pub fn create_with_size_mut<T>(&mut self, size: usize) -> DeviceBox<T>
    where
        T: ?Sized,
    {
        self.create_with_size_as::<T>(size, Mutability::Mut)
    }

    /// Creates a constant `DeviceBox<T>` from a borrow of `T`
    ///
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let pi: DeviceBox<f32> = device.create_from(&3.1415);
    /// # Ok(())
    /// # }
    /// ```
    pub fn create_from<T, B: Borrow<T>>(&mut self, host_obj: B) -> DeviceBox<T>
    where
        T: AsBytes + ?Sized,
    {
        self.create_from_as::<T, B>(host_obj, Mutability::Const)
    }

    /// Creates a mutable `DeviceBox<T>` from a borrow of `T`
    ///
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let data = vec![0.0; 2048];
    /// let mut data_on_gpu: DeviceBox<[f32]> = device.create_from(data.as_slice());
    /// # Ok(())
    /// # }
    /// ```
    pub fn create_from_mut<T, B: Borrow<T>>(&mut self, host_obj: B) -> DeviceBox<T>
    where
        T: AsBytes + ?Sized,
    {
        self.create_from_as::<T, B>(host_obj, Mutability::Mut)
    }

    fn create_with_size_as<T>(&mut self, size: usize, mutability: Mutability) -> DeviceBox<T>
    where
        T: ?Sized,
    {
        let staging_buffer = {
            let mapped = self.device.create_buffer_mapped(&wgpu::BufferDescriptor {
                label: None,
                size: size as u64,
                usage: wgpu::BufferUsage::MAP_READ
                    | wgpu::BufferUsage::COPY_DST
                    | wgpu::BufferUsage::COPY_SRC,
            });
            mapped.finish()
        };
        let storage_buffer = self.device.create_buffer(&wgpu::BufferDescriptor {
            label: None,
            size: size as u64, // casting usize to u64 is safe since usize is subtype of u64
            usage: match mutability {
                Mutability::Mut => wgpu::BufferUsage::STORAGE,
                Mutability::Const => wgpu::BufferUsage::STORAGE_READ,
            } | wgpu::BufferUsage::COPY_DST
                | wgpu::BufferUsage::COPY_SRC,
        });
        DeviceBox {
            staging_buffer,
            storage_buffer,
            size: size as u64,
            phantom: PhantomData,
            mutability: Some(mutability),
        }
    }

    fn create_from_as<T, B: Borrow<T>>(
        &mut self,
        host_obj: B,
        mutability: Mutability,
    ) -> DeviceBox<T>
    where
        T: AsBytes + ?Sized,
    {
        // serialize the data into bytes
        // these bytes can later be deserialized back into T
        let host_obj_bytes = host_obj.borrow().as_bytes();

        // create a staging buffer with host_obj copied over
        // then create an empty storage buffer of appropriate size
        let staging_buffer = self.device.create_buffer_with_data(
            host_obj_bytes,
            wgpu::BufferUsage::MAP_READ | wgpu::BufferUsage::COPY_DST | wgpu::BufferUsage::COPY_SRC,
        );
        let storage_buffer = self.device.create_buffer(&wgpu::BufferDescriptor {
            label: None,
            size: host_obj_bytes.len() as u64, // casting usize to u64 is safe since usize is subtype of u64
            usage: match mutability {
                Mutability::Mut => wgpu::BufferUsage::STORAGE,
                Mutability::Const => wgpu::BufferUsage::STORAGE_READ,
            } | wgpu::BufferUsage::COPY_DST
                | wgpu::BufferUsage::COPY_SRC,
        });

        // now copy over the staging buffer to the storage buffer
        let mut encoder = self
            .device
            .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
        encoder.copy_buffer_to_buffer(
            &staging_buffer,
            0,
            &storage_buffer,
            0,
            host_obj_bytes.len() as u64,
        );
        self.queue.submit(&[encoder.finish()]);

        // return the final DeviceBox
        // note that we keep both the storage buffer and the staging buffer
        // we will re-use the staging buffer for reads (but not for writes, for writes we just create a new staging buffer)
        DeviceBox {
            staging_buffer,
            storage_buffer,
            size: host_obj_bytes.len() as u64,
            phantom: PhantomData,
            mutability: Some(mutability),
        }
    }

    // TODO say what is blocking and what isn't in the comments
    /// Uploads data from the given borrow to `T` to the given `DeviceBox<T>` that lives on this (meaning `self`) device
    ///
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let data = vec![0.0; 2048];
    /// let mut data_on_gpu: DeviceBox<[f32]> = device.create_from_mut(data.as_slice());
    /// device.set_from(&mut data_on_gpu, vec![0.5; 2048].as_slice());
    /// # Ok(())
    /// # }
    /// ```
    pub fn set_from<T, B: Borrow<T>>(&mut self, device_obj: &mut DeviceBox<T>, host_obj: B)
    where
        T: AsBytes + ?Sized,
    {
        if device_obj.mutability.is_some() {
            assert_eq!(device_obj.mutability.unwrap(), Mutability::Mut, "expected the `DeviceBox` being set to be mutable (each `DeviceBox` constructor has a \"constant\" version and a \"mut\" version)");
        }

        // serialize the data into bytes
        // these bytes can later be deserialized back into T
        let host_obj_bytes = host_obj.borrow().as_bytes();

        // create a staging buffer with host_obj copied over
        // set this staging buffer as the new staging buffer for the device box
        let staging_buffer = self.device.create_buffer_with_data(
            host_obj_bytes,
            wgpu::BufferUsage::MAP_READ | wgpu::BufferUsage::COPY_DST | wgpu::BufferUsage::COPY_SRC,
        );
        device_obj.staging_buffer = staging_buffer;

        // now copy over the staging buffer to the storage buffer
        let mut encoder = self
            .device
            .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
        encoder.copy_buffer_to_buffer(
            &device_obj.staging_buffer,
            0,
            &device_obj.storage_buffer,
            0,
            device_obj.size,
        );
        self.queue.submit(&[encoder.finish()]);
    }

    /// Downloads data from the given `DeviceBox<T>` asynchronously and returns a boxed slice of `T`
    ///
    /// This functions is asynchronous so you can either `.await` it in an asynchronous context (like an `async fn` or `async` block) or you can
    /// simply pass the returned future to an executor.
    /// ```
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// // get a device
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    ///
    /// // create some data on a GPU and mutate it in place
    /// let data = vec![0.0; 2048];
    /// let mut data_on_gpu: DeviceBox<[f32]> = device.create_from_mut(data.as_slice());
    /// device.set_from(&mut data_on_gpu, vec![0.5; 2048].as_slice());
    ///
    /// // use `get` to download from the GPU
    /// assert_eq!(futures::executor::block_on(device.get(&data_on_gpu))?,
    ///     vec![0.5; 2048].into_boxed_slice());
    /// # Ok(())
    /// # }
    /// ```
    pub async fn get<T>(&mut self, device_obj: &DeviceBox<[T]>) -> Result<Box<[T]>, CompletionError>
    where
        T: FromBytes + Copy, // implicitly, T is also Sized which is necessary for us to be able to deserialize
    {
        // assert that the data we're getting is mutable
        // if it's constant, you shouldn't be getting it in the first place
        // there is a possibility it has changed and its only safe to ensure that its marked as mutable
        if device_obj.mutability.is_some() {
            assert_eq!(device_obj.mutability.unwrap(), Mutability::Mut, "the `DeviceBox` from which you are downloading data from a device should be mutable, not constant");
        }

        // first, we copy over data from the storage buffer to the staging buffer
        // the staging buffer is host visible so we can then work with it more easily
        let mut encoder = self
            .device
            .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
        encoder.copy_buffer_to_buffer(
            &device_obj.storage_buffer,
            0,
            &device_obj.staging_buffer,
            0,
            device_obj.size,
        );
        self.queue.submit(&[encoder.finish()]);

        // now we can return a future for data read from staging buffer
        // this does a kind of complicated deserialization procedure
        // basically it does staging_buffer -> [T]
        let result = device_obj.staging_buffer.map_read(0u64, device_obj.size); // this gets a GpuFuture<Result<BufferReadMapping, ()>>

        // poll the device
        // TODO this should not be blocking (since this is async) we need to find some way to poll a
        self.device.poll(wgpu::Maintain::Wait);

        result
            .await
            .map(|buffer_read_mapping| {
                buffer_read_mapping
                    .as_slice() // this gets the &[u8] held by BufferReadMapping
                    .chunks_exact(std::mem::size_of::<T>()) // this creates an iterator over each item of size = size_of(T)
                    .map(|item| {
                        let layout_verified: LayoutVerified<_, T> =
                            LayoutVerified::new(item).unwrap(); // TODO ensure this unwrap makes sense
                        *layout_verified
                    }) // this deserializes each size_of(T) item
                    .collect() // this collects it all into a [T]
            }) // this transforms the inner BufferReadMapping
            .map_err(|_error| CompletionError)
    }

    /// Runs the given `DeviceFnMut` on a multi-dimensional space of threads to launch and arguments to pass to the launched kernel
    ///
    /// This is unsafe because it runs arbitrary code on a device.
    /// ```no_run
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    /// let data = vec![0.0; 2048];
    /// let mut data_on_gpu: DeviceBox<[f32]> = device.create_from(data.as_slice());
    ///
    /// // these are bytes so we first convert to 4-byte words
    /// let shader: Vec<u32> = convert_to_spirv(std::io::Cursor::new(vec![
    ///     // Magic number.           Version number: 1.0.
    ///     0x03, 0x02, 0x23, 0x07,    0x00, 0x00, 0x01, 0x00,
    ///     // Generator number: 0.    Bound: 0.
    ///     0x00, 0x00, 0x00, 0x00,    0x00, 0x00, 0x00, 0x00,
    ///     // Reserved word: 0.
    ///     0x00, 0x00, 0x00, 0x00,
    ///     // OpMemoryModel.          Logical.
    ///     0x0e, 0x00, 0x03, 0x00,    0x00, 0x00, 0x00, 0x00,
    ///     // GLSL450.
    ///     0x01, 0x00, 0x00, 0x00]))?;
    ///
    /// // then, we compile to a `DeviceFnMut`
    /// // the compilation here will fail at runtime because the above shader
    /// // doesn't have an entry point called main
    /// let shader_compiled = device.compile(ParamsBuilder::new().build(), "main", shader)?;
    ///
    /// // run
    /// unsafe { device.call(&shader_compiled, (1, 1, 1), ArgsBuilder::new().build())? };
    /// # Ok(())
    /// # }
    /// ```
    pub unsafe fn call<'a>(
        &mut self,
        device_fn_mut: &DeviceFnMut,
        work_space_dim: (u32, u32, u32),
        args: DeviceFnMutArgs<'a>,
    ) -> Result<(), LaunchError> {
        // check that params and args match in type
        for (set_num, set) in &args.bind_groups {
            for (binding_num, binding) in &set.0 {
                let message = "the compiled `DeviceFnMut` does not have parameters that match the arguments being passed to it";
                let arg_type = &binding.1;
                let param_type = device_fn_mut
                    .param_types
                    .get(&set_num)
                    .expect(message)
                    .get(&binding_num)
                    .expect(message);
                if arg_type.type_name.is_some() && param_type.type_name.is_some() {
                    assert_eq!(
                        arg_type.type_name.as_ref().unwrap(),
                        param_type.type_name.as_ref().unwrap(),
                        "argument of type {:?} and parameter of type {:?} do not match in type",
                        arg_type.type_name.as_ref().unwrap(),
                        param_type.type_name.as_ref().unwrap()
                    );
                }
                if arg_type.mutability.is_some() && param_type.mutability.is_some() {
                    if param_type.mutability.unwrap() == Mutability::Mut {
                        assert_eq!(
                            arg_type.mutability.as_ref().unwrap(),
                            &Mutability::Mut,
                            "parameter is mutable so argument must also be mutable, not constant"
                        );
                    }
                }
            }
        }

        // begin the encoder of command to send to device
        // then, generate command to do computation
        let mut encoder = self
            .device
            .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });

        let mut bind_groups = vec![];
        for (set_num, (bind_group, _offsets)) in &args.bind_groups {
            bind_groups.push(
                self.device.create_bind_group(&wgpu::BindGroupDescriptor {
                    label: None, // TODO maybe in all these label fields, we should actually use a label
                    layout: &device_fn_mut.bind_group_layouts[&set_num],
                    bindings: bind_group
                        .values()
                        .map(|binding| binding.0.clone())
                        .collect::<Vec<wgpu::Binding<'a>>>()
                        .as_slice(),
                    // TODO ensure the above clone is okay, it should be only cloning the underlying borrow of a buffer and not cloning the entire buffer
                }),
            );
        }
        {
            // our compute pass will have 2 parts
            // 1. the pipeline, using the device_fn_mut
            // 2. the bind group, using the args
            let mut cpass = encoder.begin_compute_pass();
            // first we set the pipeline
            cpass.set_pipeline(&device_fn_mut.compute_pipeline);
            // then we apply the bind groups, binding all the arguments

            for (set_num, (_bind_group, offsets)) in args.bind_groups {
                // bind_group = collection of bindings
                cpass.set_bind_group(set_num, &bind_groups[set_num as usize], &*offsets);
            }
            // finally we dispatch the compute pass with given work space dims
            // note that these work space dims would essentially be the same things that are between triple brackets in CUDA
            cpass.dispatch(work_space_dim.0, work_space_dim.1, work_space_dim.2);
        }

        // finally, send the command
        self.queue.submit(&[encoder.finish()]);

        Ok(())
    }

    /// Compiles a `DeviceFnMut` using the given parameters, entry point name, and SPIR-V program
    ///
    /// The entry point is where in the SPIR-V program the compiled kernel should be entered upon execution.
    /// The entry point's name is anything implementing `Into<String>` including `&str` and `String` while
    /// the program itself is anything `Borrow<[u32]>` including `Vec<u32>` and `&[u32]`.
    /// ```no_run
    /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// // get a device to use
    /// let mut device = &mut futures::executor::block_on(Device::all())[0];
    ///
    /// // these are bytes so we first convert to 4-byte words
    /// let shader: Vec<u32> = convert_to_spirv(std::io::Cursor::new(vec![
    ///     // Magic number.           Version number: 1.0.
    ///     0x03, 0x02, 0x23, 0x07,    0x00, 0x00, 0x01, 0x00,
    ///     // Generator number: 0.    Bound: 0.
    ///     0x00, 0x00, 0x00, 0x00,    0x00, 0x00, 0x00, 0x00,
    ///     // Reserved word: 0.
    ///     0x00, 0x00, 0x00, 0x00,
    ///     // OpMemoryModel.          Logical.
    ///     0x0e, 0x00, 0x03, 0x00,    0x00, 0x00, 0x00, 0x00,
    ///     // GLSL450.
    ///     0x01, 0x00, 0x00, 0x00]))?;
    ///
    /// // then, we compile to a `DeviceFnMut`
    /// // the compilation here will fail at runtime because the above shader
    /// // doesn't have an entry point called main
    /// let shader_compiled = device.compile(ParamsBuilder::new().build(), "main", shader)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn compile<T: Into<String>, P: Borrow<[u32]>>(
        &self,
        program_params: DeviceFnMutParams,
        program_entry: T,
        program: P,
    ) -> Result<DeviceFnMut, CompileError> {
        // TODO return a Result with error for compile error
        // TODO use proper error types
        let mut bind_group_layouts: HashMap<u32, wgpu::BindGroupLayout> = HashMap::new();
        let mut param_types = HashMap::new();
        for (set_num, set) in program_params.bind_group_layouts {
            // update param_types
            for (binding_num, binding) in &set {
                if !param_types.contains_key(&set_num) {
                    param_types.insert(set_num, HashMap::new());
                }
                param_types
                    .get_mut(&set_num)
                    .unwrap()
                    .insert(*binding_num, binding.1.clone());
            }
            // update bind_group_layouts
            bind_group_layouts.insert(
                set_num,
                self.device
                    .create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
                        label: None,
                        bindings: set
                            .values()
                            .map(|binding_layout| binding_layout.0.clone())
                            .collect::<Vec<wgpu::BindGroupLayoutEntry>>()
                            .as_slice(),
                    }),
            );
        }
        let pipeline_layout = self
            .device
            .create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
                bind_group_layouts: bind_group_layouts
                    .values()
                    .collect::<Vec<&wgpu::BindGroupLayout>>()
                    .as_slice(),
            });
        let pipeline = self
            .device
            .create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
                layout: &pipeline_layout,
                compute_stage: wgpu::ProgrammableStageDescriptor {
                    // TODO use a Result for this function instead of unwrap_or hack
                    module: &self.device.create_shader_module(program.borrow()), // this is where we compile the bytecode program itself
                    entry_point: program_entry.into().as_str(), // this will probably be something like "main" or the name of the main function
                },
            });
        Ok(DeviceFnMut {
            param_types,
            bind_group_layouts,
            compute_pipeline: pipeline,
        })
    }
}

/// Converts a slice of bytes to a slice of 4-byte words
///
/// Just as a quick example...
/// ```
/// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let shader: Vec<u32> = convert_to_spirv(std::io::Cursor::new(vec![
///     // Magic number.           Version number: 1.0.
///     0x03, 0x02, 0x23, 0x07,    0x00, 0x00, 0x01, 0x00,
///     // Generator number: 0.    Bound: 0.
///     0x00, 0x00, 0x00, 0x00,    0x00, 0x00, 0x00, 0x00,
///     // Reserved word: 0.
///     0x00, 0x00, 0x00, 0x00,
///     // OpMemoryModel.          Logical.
///     0x0e, 0x00, 0x03, 0x00,    0x00, 0x00, 0x00, 0x00,
///     // GLSL450.
///     0x01, 0x00, 0x00, 0x00]))?;
/// # Ok(())
/// # }
/// ```
pub fn convert_to_spirv<T: Read + Seek>(src: T) -> Result<Vec<u32>, std::io::Error> {
    wgpu::read_spirv(src)
}

/// A type for [boxing](https://en.wikipedia.org/wiki/Object_type_(object-oriented_programming)#Boxing) stuff stored on a device
///
/// It is generic over a type `T` so that we can safely transmute data from the
/// GPU (`DeviceBox<T>`) to and from data from the CPU (`T`). There are many ways a `DeviceBox<T>` can be constructed.
/// ```
/// # use emu_core::prelude::*;
/// # use emu_glsl::*;
/// # use zerocopy::*;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # futures::executor::block_on(assert_device_pool_initialized());
/// // this is useful for passing arguments to kernels that are of primitive types
/// let pi = DeviceBox::new(3.1415)?;
/// let data: DeviceBox<[f32]> = DeviceBox::from_ref(&vec![1.0; 2048])?;
/// let data: DeviceBox<[f32]> = DeviceBox::with_size(2048 * std::mem::size_of::<f32>())?;
/// let pi = (3.1415).into_device_boxed()?;
/// let numbers = (0..2048).into_device_boxed()?;
/// let data = vec![0; 2048].into_iter().into_device_boxed()?;
/// # Ok(())
/// # }
/// ```
/// You can also construct a `DeviceBox<T>` from existing data.
/// ```
/// # use emu_core::prelude::*;
/// # use emu_glsl::*;
/// # use zerocopy::*;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # futures::executor::block_on(assert_device_pool_initialized());
/// let one_on_cpu = vec![1.0; 1024];
/// let zero_on_cpu = vec![0.0; 1024];
/// let data_on_cpu = vec![0.5; 1024];
/// let data_on_gpu: DeviceBox<[f32]> = data_on_cpu.as_device_boxed()?;
/// let zero_on_gpu: DeviceBox<[f32]> = zero_on_cpu.into_iter().into_device_boxed()?;
/// // prefer as_device_boxed to avoid the unnecessary copy
/// // that is unless, you really need to construct from an iterator
/// let one_on_gpu: DeviceBox<[f32]> = one_on_cpu.into_iter().take(512).into_device_boxed()?;
/// # Ok(())
/// # }
/// ```
/// And you can also load custom structures onto the GPU.
/// ```
/// use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
///
/// #[repr(C)]
/// #[derive(AsBytes, FromBytes, Copy, Clone, Default, Debug)]
/// struct Shape {
///     pos: [f32; 2],
///     num_edges: u32,
///     radius: f32
/// }
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     // `assert_device_pool_initialized` should be called before using any Emu API function
///     // well, except for `pool` which you would only use to manually populate the device pool
///     futures::executor::block_on(assert_device_pool_initialized());
///
///     // create data and move to the GPU
///     let shapes = vec![Shape::default(); 512];
///     let shapes_on_gpu: DeviceBox<[Shape]> = shapes.as_device_boxed()?;
///
///     Ok(())
/// }
/// ```
/// If you want to make your own collections move-able to the GPU, you can implement either [`AsDeviceBoxed`](../boxed/trait.AsDeviceBoxed.html)
/// or [`IntoDeviceBoxed`](../boxed/trait.IntoDeviceBoxed.html). Lastly, keep in mind that all of the above examples create _constant_ data.
/// To allow GPU data to be mutated, for most of the above functions, their mutable equivalent has the same name but with a `mut` appended.
/// ```
/// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # futures::executor::block_on(assert_device_pool_initialized());
/// let one_on_cpu = vec![1.0; 1024];
/// let zero_on_cpu = vec![0.0; 1024];
/// let data_on_cpu = vec![0.5; 1024];
/// let data_on_gpu: DeviceBox<[f32]> = data_on_cpu.as_device_boxed_mut()?;
/// let mut zero_on_gpu: DeviceBox<[f32]> = zero_on_cpu.into_iter().into_device_boxed_mut()?;
/// let one_on_gpu: DeviceBox<[f32]> = one_on_cpu.into_iter().take(512).into_device_boxed_mut()?;
/// # Ok(())
/// # }
/// ```
/// Emu keeps tracks of whether or not data is mutable as well as their type to ensure that data is safely passed back and forth to and from
/// kernels running on a GPU.
///
/// Also, `DeviceBox` implements `From` and `Into` to help you switch between `DeviceBox` and its WebGPU internals if you want to.
/// The WebGPU internals are encapsulated in a 4-tuple corresponding simply to the staging buffer, storage buffer, and size in bytes respectively (there is also an optional mutability marker).
/// You should ignore the staging buffer for now since we are working towards replacing 1 staging buffer per `DeviceBox` with a global pool of staging buffers
/// that is shared by all `DeviceBox`s..
pub struct DeviceBox<T>
where
    T: ?Sized,
{
    pub(crate) staging_buffer: wgpu::Buffer,
    pub(crate) storage_buffer: wgpu::Buffer,
    pub(crate) size: u64, // inv: size being constant and equal to sizes of staging, storage buffers respectively
    pub(crate) phantom: PhantomData<T>,
    pub(crate) mutability: Option<Mutability>, // TODO for now constant scalars are passed in as storage buffers
                                               // this is fine for now but in the future we should allow a DeviceBox to potentially use a uniform for small sizes of constant data
                                               // this optimization would make memory transfer faster (maybe)
}

impl<T: ?Sized> From<(wgpu::Buffer, wgpu::Buffer, u64, Option<Mutability>)> for DeviceBox<T> {
    fn from(wgpu_stuff: (wgpu::Buffer, wgpu::Buffer, u64, Option<Mutability>)) -> Self {
        Self {
            staging_buffer: wgpu_stuff.0,
            storage_buffer: wgpu_stuff.1,
            size: wgpu_stuff.2,
            phantom: PhantomData,
            mutability: wgpu_stuff.3,
        }
    }
}

impl<T: ?Sized> Into<(wgpu::Buffer, wgpu::Buffer, u64, Option<Mutability>)> for DeviceBox<T> {
    fn into(self) -> (wgpu::Buffer, wgpu::Buffer, u64, Option<Mutability>) {
        (
            self.staging_buffer,
            self.storage_buffer,
            self.size,
            self.mutability,
        )
    }
}

/// Represents a compiled kernel that can then be launched across spawned threads with [`Device::call`](struct.Device.html#method.call) or [`spawn`](../spawn/fn.spawn.html)
///
/// While compiling a `DeviceFnMut` is expensive, running a `DeviceFnMut` with varying work space dimensions or arguments incurs no significant extra compilation.
/// There isn't really much you will need to do with this. Just know that this is basically the final compiled kernel. It's the end of the compilation pipeline (it's generated
/// from SPIR-V) and is the input to the execution of your kernel.
#[derive(From, Into)]
pub struct DeviceFnMut {
    // we really just need 2 things to define a function
    // 1. the layout of input buffers to be bound (think of this as declaring the parameters of the function)
    // 2. the shader module and its entry point (this is like the actual body of the function)
    // both of these can be used to produce the following
    pub(crate) param_types: HashMap<u32, HashMap<u32, ArgAndParamInfo>>, // you can just set all types to None if you don't care about type checking
    pub(crate) bind_group_layouts: HashMap<u32, wgpu::BindGroupLayout>,  // u32 = set number
    pub(crate) compute_pipeline: wgpu::ComputePipeline, // inv: has PipelineLayout consistent with above BindGroupLayout's
}

/// Describes the parameters that can be passed to a `DeviceFnMut`
///
/// This is cheap to construct and something you can safely clone multiple times.
/// See [`ParamsBuilder`](struct.ParamsBuilder.html) for a convenience builder of `DeviceFnMutParams`.
/// `DeviceFnMutParams` encapsulates a map from each set number to a map from each binding in the set to
/// a binding layout. The binding layout contains both the `wgpu::BindGroupLayoutEntry` and an `ArgAndParamInfo` storing information
/// for each parameter.
///
/// Looking into WebGPU docs and Emu source code is probably the best way to figure out how to work with the WebGPU
/// data structures encapsulated by `DeviceFnMutParams`.
#[derive(From, Into, Clone)]
pub struct DeviceFnMutParams {
    bind_group_layouts: HashMap<u32, HashMap<u32, (wgpu::BindGroupLayoutEntry, ArgAndParamInfo)>>, // (u32, u32) = (set number, binding number)
}

impl Hash for DeviceFnMutParams {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for bind_group_layout in self.bind_group_layouts.values() {
            for entry in bind_group_layout.values() {
                entry.hash(state);
            }
        }
    }
}

impl DeviceFnMutParams {
    /// Constructs a set of parameters where each parameter is mutable
    pub fn new(num_params: usize) -> Self {
        let mut bind_group_layouts = HashMap::new();
        let mut binding_layouts = HashMap::new();
        for _ in 0..num_params {
            let new_binding_layout_idx = binding_layouts.len() as u32;
            binding_layouts.insert(
                new_binding_layout_idx,
                (
                    wgpu::BindGroupLayoutEntry {
                        binding: new_binding_layout_idx,
                        visibility: wgpu::ShaderStage::COMPUTE,
                        ty: wgpu::BindingType::StorageBuffer {
                            dynamic: false, // we usually don't need dynamic for compute so we default to 0, of course if you need it you can provide your own Device...Params
                            readonly: false, // for now, this is just always mutable bc I don't know if readonly is more performant
                        },
                    },
                    ArgAndParamInfo::default(),
                ),
            );
        }
        bind_group_layouts.insert(0, binding_layouts);

        Self { bind_group_layouts }
    }
}

/// Says whether or not something is mutable
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
pub enum Mutability {
    Mut,
    Const,
}

/// Helps with building a `DeviceFnMutParams`
///
/// `ParamsBuilder` helps you build a `DeviceFnMutParams` by specifying whether or not each parameter is mutable.
/// ```
/// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # futures::executor::block_on(assert_device_pool_initialized());
/// let data: DeviceBox<[f32]> = vec![0.0; 4096].as_device_boxed_mut()?;
/// let tau = DeviceBox::new(6.2832)?;
/// let args = ParamsBuilder::new()
///     .param::<[f32]>(Mutability::Mut)
///     .param::<f32>(Mutability::Const)
///     .build();
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct ParamsBuilder {
    binding_layouts: HashMap<u32, (wgpu::BindGroupLayoutEntry, ArgAndParamInfo)>,
}

impl Hash for ParamsBuilder {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for binding_layout in self.binding_layouts.values() {
            binding_layout.hash(state);
        }
    }
}

impl ParamsBuilder {
    /// Starts the building process with no parameters
    pub fn new() -> Self {
        Self {
            binding_layouts: HashMap::new(),
        }
    }

    /// Adds on a parameter with given mutability
    pub fn param<T: ?Sized>(mut self, mutability: Mutability) -> Self {
        let new_binding_layout_idx = self.binding_layouts.len() as u32;
        self.binding_layouts.insert(
            new_binding_layout_idx,
            (
                wgpu::BindGroupLayoutEntry {
                    binding: new_binding_layout_idx,
                    visibility: wgpu::ShaderStage::COMPUTE,
                    ty: wgpu::BindingType::StorageBuffer {
                        dynamic: false, // we usually don't need dynamic for compute so we default to 0, of course if you need it you can provide your own Device...Params
                        readonly: mutability == Mutability::Const,
                    },
                },
                ArgAndParamInfo {
                    type_name: Some(String::from(core::any::type_name::<T>())),
                    mutability: Some(mutability),
                },
            ), // for now we use type name, in the future we will use something more unique like core::any::TypeID
        );

        self
    }

    /// Builds a `DeviceFnMutParams`
    pub fn build(self) -> DeviceFnMutParams {
        let mut bind_group_layouts = HashMap::new();
        bind_group_layouts.insert(0, self.binding_layouts); // again, we usually don't need more than 1 set, so we default to just 1

        DeviceFnMutParams { bind_group_layouts }
    }
}

/// Information that is held by both arguments and by parameters
///
/// If its fields are `Some`, `ArgAndParamInfo` can be used to check whether or not
/// arguments and parameters are compatible
#[derive(Default, PartialEq, Hash, Clone)]
pub struct ArgAndParamInfo {
    type_name: Option<String>, // in the future, we should use core::any::TypeId
    mutability: Option<Mutability>,
}

/// Holds the actual arguments to be passed into a [`DeviceFnMut`](struct.DeviceFnMut.html)
///
/// See [`ArgsBuilder`](struct.ArgsBuilder.html) for a convenience builder of `DeviceFnMutArgs`.
/// `DeviceFnMutArgs` encapsulates a map from set numbers to maps from binding numbers to bindings.
/// Each binding stores both a `wgpu::Binding` and an `ArgAndParamInfo` for the argument being bound.
/// Each set stores a `Vec<u32>` which can be empty as a reasonable default.
///
/// Looking into WebGPU docs and Emu source code is probably the best way to figure out how to work with the WebGPU
/// data structures encapsulated by `DeviceFnMutArgs`.
#[derive(From, Into)]
pub struct DeviceFnMutArgs<'a> {
    // this contains information for each bind group (marked by a u32 set number)
    // each bind group has a set of bindings (mapped from u32 binding number) and a set of offsets
    // note that set number and binding number are things you might see if you're looking at GLSL code
    //
    // in practice, there will usually just be 1 bind group and offsets = &[]
    // but we accept a full HashMap supporting multiple bind groups to facilitate nice interop with wgpu
    //
    // also, note the lifetime
    // a wgpu::Binding owns a borrow of data (like a wgpu::Buffer owned by a DeviceBox)
    // we must ensure that DeviceFnMutArgs doesn't outlive the Buffer (and maybe DeviceBox) that it refers to
    //
    // and technically there can't be more than 4 sets (I think) but we still just use a HashMap for convenience
    bind_groups: HashMap<
        u32,
        (
            HashMap<u32, (wgpu::Binding<'a>, ArgAndParamInfo)>,
            Vec</*wgpu::BufferAddress*/ u32>,
        ),
    >, // (u32, u32) = (set number, binding number)
}

/// Helps with building a `DeviceFnMutArgs`
///
/// `ArgsBuilder` helps you build a `DeviceFnMutArgs` by providing references to each `DeviceBox` argument. It's perfectly safe to
/// pass a reference to a mutable `DeviceBox`. If the kernel these arguments are being passed to only accepts mutable arguments, Emu
/// will assert that they are at runtime.
/// ```
/// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*};
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # futures::executor::block_on(assert_device_pool_initialized());
/// let data: DeviceBox<[f32]> = vec![0.0; 4096].as_device_boxed()?;
/// let tau = DeviceBox::new(6.2832)?;
/// let args = ArgsBuilder::new()
///     .arg(&data)
///     .arg(&tau)
///     .build();
/// # Ok(())
/// # }
/// ```
pub struct ArgsBuilder<'a> {
    bindings: HashMap<u32, (wgpu::Binding<'a>, ArgAndParamInfo)>,
}

impl<'a> ArgsBuilder<'a> {
    /// Creates a new builder with no arguments
    pub fn new() -> Self {
        Self {
            bindings: HashMap::new(),
        }
    }

    /// Declare a new arguments by passing in a `DeviceBox`
    pub fn arg<T: ?Sized>(mut self, device_obj: &'a DeviceBox<T>) -> Self {
        let new_binding_idx = self.bindings.len() as u32;
        self.bindings.insert(
            new_binding_idx,
            (
                wgpu::Binding {
                    binding: new_binding_idx,
                    resource: wgpu::BindingResource::Buffer {
                        buffer: &device_obj.storage_buffer,
                        range: 0..device_obj.size,
                    },
                },
                ArgAndParamInfo {
                    type_name: Some(String::from(core::any::type_name::<T>())),
                    mutability: device_obj.mutability,
                },
            ), // for now we use type name, in the future we will use something more unique like core::any::TypeID
        );

        self
    }

    /// Builds the final `DeviceFnMutArgs`
    pub fn build(self) -> DeviceFnMutArgs<'a> {
        let mut bind_groups = HashMap::with_capacity(4);
        bind_groups.insert(0, (self.bindings, vec![])); // again, we usually don't need more than 1 set, so we default to just 1

        DeviceFnMutArgs { bind_groups }
    }
}