1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
//! A few implemented source languages that can be compiled to SPIR-V use crate::compile::*; use crate::device::*; use crate::error::*; use std::borrow::BorrowMut; use std::hash::Hash; // // Spirv made using SpirvBuilder // /// A SPIR-V-to-SPIR-V compiler! /// /// Yeah, this doesn't really do anything. But it _does_ implement `CompileToSpirv` so it _is_ what you should use /// as the type parameter for [`compile`](../compile/fn.compile.html) if you are compiling down from SPIR-V. pub struct SpirvCompile; impl<P: Hash + BorrowMut<[u32]>> CompileToSpirv<Spirv<P>, P> for SpirvCompile { fn compile_to_spirv(src: Spirv<P>) -> Result<Spirv<P>, CompileError> { Ok(src) } } // // Glsl // /// A wrapper of GLSL code with methods to help progressively wrap your GLSL /// /// This wrapper includes some extra information that is important, such as the name of the entry point of the GLSL chunk (e.g. - "main"), the mutability of each parameter buffer, /// and the GLSL code itself. /// /// You can construct a GLSL kernel and compile it with `GlslCompile` as follows. /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 2048]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: Glsl = Glsl::new() /// .set_entry_point_name("main") /// .add_param_mut::<[f32]>() /// .add_param::<f32>() /// .set_code_with_glsl(r#" /// #version 450 /// layout(local_size_x = 1) in; /// /// layout(set = 0, binding = 0) buffer Data { /// float[] data; /// }; /// /// // if you are passing in multiple arguments of primitive types, /// // you may want to store each argument in a field of a structure and /// // then pass that structure into a buffer in a GLSL kernel /// layout(set = 0, binding = 1) buffer Scalar { /// float scalar; /// }; /// /// void main() { /// uint index = gl_GlobalInvocationID.x; /// data[index] = data[index] * scalar; /// } /// "#); /// let spirv_or_finished = compile::<Glsl, GlslCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn(2048).launch(call!(finished, &mut data_on_gpu, &DeviceBox::new(10.0f32)?))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![10.0; 2048].into_boxed_slice()); /// # Ok(()) /// # } /// ``` #[derive(Hash)] #[cfg(feature = "glsl-compile")] pub struct Glsl { name: String, params_builder: ParamsBuilder, code: String, } #[cfg(feature = "glsl-compile")] impl Glsl { /// Creates a new GLSL builder pub fn new() -> Self { Glsl { name: String::from("main"), params_builder: ParamsBuilder::new(), code: String::from("#version 450\nvoid main() {}"), } } /// Sets the name of the point in this chunk of GLSL where it should be entered /// /// For example, your code's entry point name might be "main" if you have a "void main" function. pub fn set_entry_point_name(mut self, name: impl Into<String>) -> Self { self.name = name.into(); self } /// Declares an additional parameter - that is constant - to the compute kernel in this GLSL pub fn add_param<T: ?Sized>(mut self) -> Self { self.params_builder = self.params_builder.param::<T>(Mutability::Const); self } /// Declares an additional parameter - that is mutable - to the compute kernel in this GLSL pub fn add_param_mut<T: ?Sized>(mut self) -> Self { self.params_builder = self.params_builder.param::<T>(Mutability::Mut); self } /// Use the given string as the GLSL source code pub fn set_code_with_glsl(mut self, code: impl Into<String>) -> Self { self.code = code.into(); self } } /// A `shaderc`-based compiler for [`Glsl`](struct.Glsl.html) to SPIR-V #[cfg(feature = "glsl-compile")] pub struct GlslCompile; #[cfg(feature = "glsl-compile")] impl CompileToSpirv<Glsl, Vec<u32>> for GlslCompile { fn compile_to_spirv(src: Glsl) -> Result<Spirv<Vec<u32>>, CompileError> { // (6) compile to SPIR-V let mut compiler = shaderc::Compiler::new().unwrap(); let binary_result = compiler .compile_into_spirv( &src.code, shaderc::ShaderKind::Compute, "a compute kernel", &src.name, None, ) .unwrap(); // yes, copying the binary over into a vec is expensive // but it's necessary so that we can allow users to mutate binary later on // and the copying of the binary is dwarfed by many other operations of this library // also, we cache anyway Ok(Spirv { params: src.params_builder.build(), name: src.name, code: binary_result.as_binary().to_vec(), }) } } // // GlslKernel // /// A convenience builder for GLSL compute kernels /// /// The following is a baseline example. /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 2048]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: GlslKernel = GlslKernel::new() /// .param_mut::<[f32], _>("float[] data") /// .param::<f32, _>("float scalar") /// .with_kernel_code("data[gl_GlobalInvocationID.x] = data[gl_GlobalInvocationID.x] * scalar;"); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn(2048).launch(call!(finished, &mut data_on_gpu, &DeviceBox::new(10.0f32)?))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![10.0; 2048].into_boxed_slice()); /// # Ok(()) /// # } /// ``` #[cfg(feature = "glsl-compile")] #[derive(Hash)] pub struct GlslKernel { code: String, params: Vec<String>, params_mutability: Vec<Mutability>, params_builder: ParamsBuilder, structs: Vec<String>, consts: Vec<(String, String)>, shared: Vec<String>, local_size: Vec<u32>, helper_code: String, kernel_code: String, } #[cfg(feature = "glsl-compile")] impl GlslKernel { /// Initializes the builder pub fn new() -> Self { Self { code: String::from("#version 450\n"), params: vec![], params_mutability: vec![], params_builder: ParamsBuilder::new(), structs: vec![], consts: vec![], shared: vec![], local_size: vec![], helper_code: String::new(), kernel_code: String::new(), } } /// Spawns threads within each thread block /// /// This essentially adds on a new dimension with the given size to the space of threads for each thread block. /// The dimensions are "x", "y", and "z" in that order. If no threads are spawned, the space of threads is 1-dimensional and of size 1. /// If this is called more than 3 times, the dimensions are collapsed to a single dimension with size equal to the product of the sizes of all prior dimensions. /// /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 1 << 20]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: GlslKernel = GlslKernel::new() /// .spawn(32) /// .spawn(32) /// .param_mut::<[f32], _>("float[] data") /// .param::<f32, _>("float scalar") /// .with_kernel_code(r#" /// uint index = (1 << 10) * gl_GlobalInvocationID.x + gl_GlobalInvocationID.y; /// data[index] = data[index] * scalar; /// "#); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn((1 << 10) / 32).spawn((1 << 10) / 32).launch(call!(finished, &mut data_on_gpu, &DeviceBox::new(10.0f32)?))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![10.0; 1 << 20].into_boxed_slice()); /// # Ok(()) /// # } /// ``` pub fn spawn(mut self, num_threads: u32) -> Self { self.local_size.push(num_threads); self } /// Appends a GLSL structure definition for the type which this function is generic over /// /// This can be used for any type that implements [`GlslStruct`](../compile/trait.GlslStruct.html). /// ``` /// use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// /// #[repr(C)] /// #[derive(AsBytes, FromBytes, Copy, Clone, Default, Debug, GlslStruct, PartialEq)] /// struct Shape { /// pos: [f32; 2], /// num_edges: u32, /// radius: f32 /// } /// /// fn main() -> Result<(), Box<dyn std::error::Error>> { /// futures::executor::block_on(assert_device_pool_initialized()); /// // create some shapes on the GPU /// let mut shapes: DeviceBox<[Shape]> = vec![Shape { /// pos: [100.0, 100.0], /// num_edges: 6, /// radius: 100.0 /// }; 1024].as_device_boxed_mut()?; /// /// // define a kernel to scale and translate /// let kernel: GlslKernel = GlslKernel::new() /// .with_struct::<Shape>() /// .param_mut::<[Shape], _>("Shape[] shapes") /// // in practice, you should probably combine scale and translate in 1 struct /// .param::<f32, _>("float scale") /// .param::<[f32; 2], _>("vec2 translate") /// .with_kernel_code(r#" /// shapes[gl_GlobalInvocationID.x].pos += translate; /// shapes[gl_GlobalInvocationID.x].radius *= scale; /// "#); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// let finished = spirv_or_finished.finish()?; /// /// // run /// unsafe { /// spawn(1024).launch(call!( /// finished, &mut shapes, /// &DeviceBox::new(2.0f32)?, /// &DeviceBox::new([-100.0f32; 2])? /// ))?; /// } /// /// // check result /// assert_eq!(futures::executor::block_on(shapes.get())?, vec![Shape { /// pos: [0.0; 2], /// num_edges: 6, /// radius: 200.0 /// }; 1024].into_boxed_slice()); /// Ok(()) /// } /// ``` pub fn with_struct<T: GlslStruct>(mut self) -> Self { self.structs.push(T::as_glsl()); self } /// Appends a constant definition using the give left hand and right hand sides /// /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 2048]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: GlslKernel = GlslKernel::new() /// .param_mut::<[f32], _>("float[] data") /// .param::<f32, _>("float scalar") /// .with_kernel_code("data[gl_GlobalInvocationID.x] = data[gl_GlobalInvocationID.x] * scalar + pi;") /// .with_const("int pi", "3"); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn(2048).launch(call!(finished, &mut data_on_gpu, &DeviceBox::new(10.0f32)?))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![13.0; 2048].into_boxed_slice()); /// # Ok(()) /// # } /// ``` pub fn with_const( mut self, left_hand: impl Into<String>, right_hand: impl Into<String>, ) -> Self { self.consts.push((left_hand.into(), right_hand.into())); self } /// Creates a shared variable using the given code /// /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 2048]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: GlslKernel = GlslKernel::new() /// .spawn(64) /// .share("float scratchpad[64]") /// .param_mut::<[f32], _>("float[] data") /// .param::<f32, _>("float scalar") /// .with_kernel_code(r#" /// scratchpad[gl_LocalInvocationID.x] = data[gl_GlobalInvocationID.x]; /// // if we had a more complex access pattern, we might want a barrier() right here to ensure /// // all memory has been downloaded to the shraed scratchpad /// scratchpad[gl_LocalInvocationID.x] = scratchpad[gl_LocalInvocationID.x] * scratchpad[gl_LocalInvocationID.x]; /// scratchpad[gl_LocalInvocationID.x] = scratchpad[gl_LocalInvocationID.x] * scalar; /// scratchpad[gl_LocalInvocationID.x] = scratchpad[gl_LocalInvocationID.x] * 2; /// data[gl_GlobalInvocationID.x] = scratchpad[gl_LocalInvocationID.x]; /// "#); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn(2048 / 64).launch(call!(finished, &mut data_on_gpu, &DeviceBox::new(10.0f32)?))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![20.0; 2048].into_boxed_slice()); /// # Ok(()) /// # } /// ``` pub fn share(mut self, shared: impl Into<String>) -> Self { self.shared.push(shared.into()); self } /// Generates code for a buffer through which constant data can be passed into the kernel pub fn param<T: ?Sized, I: Into<String>>(mut self, param: I) -> Self { self.params_builder = self.params_builder.param::<T>(Mutability::Const); self.params.push(param.into()); self.params_mutability.push(Mutability::Const); self } /// Generates code for a buffer through which mutable data can be passed into the kernel pub fn param_mut<T: ?Sized, I: Into<String>>(mut self, param: I) -> Self { self.params_builder = self.params_builder.param::<T>(Mutability::Mut); self.params.push(param.into()); self.params_mutability.push(Mutability::Mut); self } /// Adds the given helper code /// /// This helper code may include additional type or function definitions. /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// # let data = vec![1.0; 2048]; /// # let mut data_on_gpu: DeviceBox<[f32]> = data.as_device_boxed_mut()?; /// /// let kernel: GlslKernel = GlslKernel::new() /// .param_mut::<[f32], _>("float[] data") /// .with_helper_code(r#" /// float invert(float x) { /// return -x; /// } /// "#) /// .with_kernel_code("data[gl_GlobalInvocationID.x] = invert(data[gl_GlobalInvocationID.x]);"); /// let spirv_or_finished = compile::<GlslKernel, GlslKernelCompile, _, GlobalCache>(kernel)?; /// // now at this point you can call `.finish` to turn `spirv_or_finished` into /// // a finished `DeviceFnMut` /// # let finished = spirv_or_finished.finish()?; /// # unsafe { spawn(2048).launch(call!(finished, &mut data_on_gpu))?; } /// # assert_eq!(futures::executor::block_on(data_on_gpu.get())?, vec![-1.0; 2048].into_boxed_slice()); /// # Ok(()) /// # } /// ``` pub fn with_helper_code(mut self, code: impl Into<String>) -> Self { self.helper_code = code.into(); self } /// Adds the body code for the kernel /// /// This body code is simply wrapped in a `void main` function. pub fn with_kernel_code(mut self, code: impl Into<String>) -> Self { self.kernel_code = code.into(); self } } /// Another `shaderc`-based compiler for compiling [`GlslKernel`](struct.GlslKernel.html) #[cfg(feature = "glsl-compile")] pub struct GlslKernelCompile; #[cfg(feature = "glsl-compile")] impl CompileToSpirv<GlslKernel, Vec<u32>> for GlslKernelCompile { fn compile_to_spirv(mut src: GlslKernel) -> Result<Spirv<Vec<u32>>, CompileError> { let kernel_name = String::from("main"); // (1) local size if src.local_size.len() == 0 { src.local_size = vec![1]; } src.code += "\nlayout("; if src.local_size.len() == 1 { src.code += "local_size_x = "; src.code += &src.local_size[0].to_string(); } if src.local_size.len() == 2 { src.code += "local_size_x = "; src.code += &src.local_size[0].to_string(); src.code += ", local_size_y = "; src.code += &src.local_size[1].to_string(); } if src.local_size.len() == 3 { src.code += "local_size_x = "; src.code += &src.local_size[0].to_string(); src.code += ", local_size_y = "; src.code += &src.local_size[1].to_string(); src.code += ", local_size_z = "; src.code += &src.local_size[2].to_string(); } if src.local_size.len() >= 4 { src.code += "local_size_x = "; src.code += &src.local_size.iter().product::<u32>().to_string(); } src.code += ") in;\n"; // (2) structs for struct_def in src.structs { src.code += &struct_def; } // (3) buffer for each parameter for (i, param) in src.params.iter().enumerate() { src.code += "\nlayout(set = 0, binding = "; src.code += &i.to_string(); src.code += ") buffer Buffer"; src.code += &i.to_string(); src.code += " {\n"; src.code += param; src.code += ";\n};\n"; } // (4) consts for (left_hand, right_hand) in src.consts { src.code += &left_hand; src.code += " = "; src.code += &right_hand; src.code += ";\n"; } // (5) shared for shared in src.shared { src.code += "shared "; src.code += &shared; src.code += ";\n"; } // (6) helper code src.code += &src.helper_code; // (7) kernel code src.code += "\nvoid main() {\n"; src.code += &src.kernel_code; src.code += "}\n"; // (8) compile to SPIR-V let mut compiler = shaderc::Compiler::new().unwrap(); let binary_result = compiler .compile_into_spirv( &src.code, shaderc::ShaderKind::Compute, "a compute kernel", "main", None, ) .unwrap(); // yes, copying the binary over into a vec is expensive // but it's necessary so that we can allow users to mutate binary later on // and the copying of the binary is dwarfed by many other operations of this library // also, we cache anyway Ok(Spirv { params: src.params_builder.build(), name: kernel_name, code: binary_result.as_binary().to_vec(), }) } }