1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
//! Functions for working with `DeviceBox<T>` and the device pool use std::borrow::Borrow; use std::iter::FromIterator; use crate::device::*; use crate::error::*; use crate::pool::*; use zerocopy::*; // what follows is a bunch of convenience functions for constructing DeviceBox<T> impl<T: ?Sized> DeviceBox<T> { // // FUNCTIONS TO CREATE CONST BOXES // /// Create a constant `DeviceBox<T>` while consuming the given `T` pub fn new<U: IntoDeviceBoxed<T>>(obj: U) -> Result<Self, NoDeviceError> { obj.into_device_boxed() } /// Create a constant `DeviceBox<T>` from a reference to `T` pub fn from_ref<U: AsDeviceBoxed<T> + ?Sized>(obj: &U) -> Result<Self, NoDeviceError> { obj.as_device_boxed() } /// Create a constant `DeviceBox<T>` where `T` has the given number of bytes pub fn with_size(size: usize) -> Result<Self, NoDeviceError> { Ok(take()?.lock().unwrap().create_with_size(size)) } // // FUNCTIONS TO CREATE MUTABLE BOXES // /// Create a mutable `DeviceBox<T>` while consuming the given `T` pub fn new_mut<U: IntoDeviceBoxed<T>>(obj: U) -> Result<Self, NoDeviceError> { obj.into_device_boxed_mut() } /// Create a mutable `DeviceBox<T>` from a reference to `T` pub fn from_ref_mut<U: AsDeviceBoxed<T> + ?Sized>(obj: &U) -> Result<Self, NoDeviceError> { obj.as_device_boxed_mut() } /// Create a mutable `DeviceBox<T>` where `T` has the given number of bytes pub fn with_size_mut(size: usize) -> Result<Self, NoDeviceError> { Ok(take()?.lock().unwrap().create_with_size_mut(size)) } } /// A trait for creating a `DeviceBox<T>` by consuming an object `T` /// /// It is implemented for all `T` that is sized as well as iterators over `T` (for iterators, we just collect everything before uploading to a `DeviceBox<T>`) where `T` can be safely serialized. /// To ensure you can safely serialize your data, you should use `#[derive(AsBytes)]` /// from [`zerocopy`](https://docs.rs/zerocopy/). If you just want to see some examples of how to create a `DeviceBox` from types for which `IntoDeviceBoxed` is already implemented, /// then just go to the [docs for `DeviceBox`](../device/struct.DeviceBox.html). /// /// Now, you can implement this for your own collection if you would like a way /// for your collection data structure to exist on the GPU. /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// #[repr(C)] /// #[derive(AsBytes, FromBytes, Copy, Clone, Default, Debug, PartialEq)] /// struct Molecule { /// position: f64, /// velocities: f64, /// forces: f64, /// } /// /// // aside: you're more likely to be implementing these traits for _general-purpose_ collections /// // than something domain-specific like this /// #[derive(Default)] /// struct Molecules { /// num_molecules: usize, /// positions: Vec<f64>, /// velocities: Vec<f64>, /// forces: Vec<f64>, /// } /// /// impl Molecules { /// fn zero(num_molecules: usize) -> Self { /// Self { /// num_molecules, /// positions: vec![0.0; num_molecules], /// velocities: vec![0.0; num_molecules], /// forces: vec![0.0; num_molecules], /// } /// } /// } /// /// impl IntoDeviceBoxed<[Molecule]> for Molecules { /// fn into_device_boxed(self) -> Result<DeviceBox<[Molecule]>, NoDeviceError> { /// Ok((0..self.num_molecules).map(|idx| Molecule { /// position: self.positions[idx], /// velocities: self.velocities[idx], /// forces: self.forces[idx], /// }).into_device_boxed()?) /// } /// /// fn into_device_boxed_mut(self) -> Result<DeviceBox<[Molecule]>, NoDeviceError> { /// Ok((0..self.num_molecules).map(|idx| Molecule { /// position: self.positions[idx], /// velocities: self.velocities[idx], /// forces: self.forces[idx], /// }).into_device_boxed_mut()?) /// } /// } /// /// fn main() -> Result<(), Box<dyn std::error::Error>> { /// futures::executor::block_on(assert_device_pool_initialized()); /// let molecules = Molecules::zero(4096); /// let molecule_list_on_gpu = molecules.into_device_boxed_mut()?; /// assert_eq!(futures::executor::block_on(molecule_list_on_gpu.get())?, /// vec![Molecule::default(); 4096].into_boxed_slice()); /// Ok(()) /// } /// ``` pub trait IntoDeviceBoxed<T: ?Sized> { fn into_device_boxed(self) -> Result<DeviceBox<T>, NoDeviceError>; fn into_device_boxed_mut(self) -> Result<DeviceBox<T>, NoDeviceError>; } impl<T: AsBytes> IntoDeviceBoxed<T> for T { fn into_device_boxed(self) -> Result<DeviceBox<T>, NoDeviceError> { Ok(take()?.lock().unwrap().create_from(&self)) } fn into_device_boxed_mut(self) -> Result<DeviceBox<T>, NoDeviceError> { Ok(take()?.lock().unwrap().create_from_mut(&self)) } } impl<T: AsBytes, U: Iterator<Item = T>> IntoDeviceBoxed<[T]> for U { fn into_device_boxed(self) -> Result<DeviceBox<[T]>, NoDeviceError> { Ok(take()? .lock() .unwrap() .create_from(&*self.collect::<Box<[T]>>())) } fn into_device_boxed_mut(self) -> Result<DeviceBox<[T]>, NoDeviceError> { Ok(take()? .lock() .unwrap() .create_from_mut(&*self.collect::<Box<[T]>>())) } } impl<T: AsBytes> FromIterator<T> for DeviceBox<[T]> { fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { iter.into_iter().into_device_boxed().unwrap() // TODO maybe in the future we should make this return a mutable - not const - DeviceBox } } /// A trait for creating a `DeviceBox<T>` from a reference to an object `T` /// /// It is implemented for all `T` (even unsized) where `T` can be safely serialized. /// To ensure you can safely serialize your data, you should use `#[derive(AsBytes)]` /// from [`zerocopy`](https://docs.rs/zerocopy/). If you just want to see some examples of how to create a `DeviceBox` from types for which `AsDeviceBoxed` is already implemented, /// then just go to the [docs for `DeviceBox`](../device/struct.DeviceBox.html). /// /// You can implement this trait for your own collection if you would like to have /// your collection somehow sends its encapsulated data over to a `DeviceBox` on the GPU. /// ``` /// use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// /// // for some reason, we want to store Molecules as an array-of-structures on the GPU /// // so we define this type for each element of the array /// #[repr(C)] /// #[derive(AsBytes, FromBytes, Copy, Clone, Default, Debug, PartialEq)] /// struct Molecule { /// position: f64, /// velocities: f64, /// forces: f64, /// } /// /// // this is the collection we would like to be able to move to the GPU easily /// #[derive(Default)] /// struct Molecules { /// num_molecules: usize, /// positions: Vec<f64>, /// velocities: Vec<f64>, /// forces: Vec<f64>, /// } /// /// impl Molecules { /// fn zero(num_molecules: usize) -> Self { /// Self { /// num_molecules, /// positions: vec![0.0; num_molecules], /// velocities: vec![0.0; num_molecules], /// forces: vec![0.0; num_molecules], /// } /// } /// } /// /// impl AsDeviceBoxed<[Molecule]> for Molecules { /// fn as_device_boxed(&self) -> Result<DeviceBox<[Molecule]>, NoDeviceError> { /// Ok((0..self.num_molecules).map(|idx| Molecule { /// position: self.positions[idx], /// velocities: self.velocities[idx], /// forces: self.forces[idx], /// }).collect::<Vec<Molecule>>().as_device_boxed()?) /// } /// /// fn as_device_boxed_mut(&self) -> Result<DeviceBox<[Molecule]>, NoDeviceError> { /// Ok((0..self.num_molecules).map(|idx| Molecule { /// position: self.positions[idx], /// velocities: self.velocities[idx], /// forces: self.forces[idx], /// }).collect::<Vec<Molecule>>().as_device_boxed_mut()?) /// } /// } /// /// fn main() -> Result<(), Box<dyn std::error::Error>> { /// futures::executor::block_on(assert_device_pool_initialized()); /// let molecules = Molecules::zero(4096); /// let molecule_list_on_gpu: DeviceBox<[Molecule]> = molecules.as_device_boxed_mut()?; /// assert_eq!(futures::executor::block_on(molecule_list_on_gpu.get())?, /// vec![Molecule::default(); 4096].into_boxed_slice()); /// Ok(()) /// } /// ``` pub trait AsDeviceBoxed<T: ?Sized> { fn as_device_boxed(&self) -> Result<DeviceBox<T>, NoDeviceError>; fn as_device_boxed_mut(&self) -> Result<DeviceBox<T>, NoDeviceError>; } impl<T: AsBytes + ?Sized, U: Borrow<T>> AsDeviceBoxed<T> for U { fn as_device_boxed(&self) -> Result<DeviceBox<T>, NoDeviceError> { Ok(take()?.lock().unwrap().create_from(self.borrow())) } fn as_device_boxed_mut(&self) -> Result<DeviceBox<T>, NoDeviceError> { Ok(take()?.lock().unwrap().create_from_mut(self.borrow())) } } // now that we can easily construct DeviceBox<T>, we provide functions for reading/writing impl<T: AsBytes + ?Sized> DeviceBox<T> { /// Uploads the given data `T` to self (a `DeviceBox<T>`) /// /// This function - as are most other functions in the Emu API - doesn't block. /// So the data transfer only occurs when the future returned by `get` is completed. /// `set` is pretty easy to use. You just pass in either an owned object or a reference and /// the object is uploaded to the GPU. /// /// Here's a quick example. /// ``` /// # use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// # fn main() -> Result<(), Box<dyn std::error::Error>> { /// # futures::executor::block_on(assert_device_pool_initialized()); /// let mut data: DeviceBox<[f32]> = vec![0.5; 1024].as_device_boxed_mut()?; /// data.set(vec![1.0; 1024])?; /// # Ok(()) /// # } /// ``` /// It is expected that the object you pass in is of the same size (in bytes) as what was /// already stored in the `DeviceBox`. For example, you should not upload a vector of different /// length than that of the slice already stored on the device. pub fn set<U: Borrow<T>>(&mut self, obj: U) -> Result<(), NoDeviceError> { Ok(take()?.lock().unwrap().set_from(self, obj.borrow())) } } impl<T: FromBytes + Copy> DeviceBox<[T]> { /// Downloads from self (a `DeviceBox<[T]>`) to a `Box<[T]>` /// /// This function is asynchronous. So you can either `.await` it in an asynchronous context or you /// can use an executor to immediately evaluate it. /// ``` /// use {emu_core::prelude::*, emu_glsl::*, zerocopy::*}; /// /// fn main() -> Result<(), Box<dyn std::error::Error>> { /// // first, we ensure that the global pool of devices has been initialized /// futures::executor::block_on(assert_device_pool_initialized()); /// // then we create some data, move it to the GPU, and mutate it /// let mut data: DeviceBox<[f32]> = vec![0.5; 1024].as_device_boxed_mut()?; /// data.set(vec![1.0; 1024])?; /// // finally, we download the data from the GPU /// assert_eq!(futures::executor::block_on(data.get())?, vec![1.0; 1024].into_boxed_slice()); /// Ok(()) /// } /// ``` /// /// For now, we only support getting simple slices but in the future we may support more complex nested slices. /// Also, to use this `T` must be safe to deserialize. You can ensure this by using `#[derive(FromBytes)]` /// from [`zerocopy`](https://https://docs.rs/zerocopy/). pub async fn get(&self) -> Result<Box<[T]>, GetError> { take() .map_err(|_| GetError::NoDevice)? .lock() .unwrap() .get(self) .await .map_err(|_| GetError::Completion) } }